
EmbeddedSystemsBuildScripts
Release v1.0

Embedded Systems Department University Duisburg-Essen

Dec 18, 2020

FOR USERS

1 Bazel Setup 3
1.1 Install Bazelisk . 3

2 AvrToolchain 5
2.1 Instantiate the AvrToolchain Repository . 5
2.2 On Platforms and Constraints . 6

3 Unit Testing 7
3.1 Basic Setup . 7
3.2 CException . 8
3.3 Mocking . 8

i

ii

EmbeddedSystemsBuildScripts, Release v1.0

A collection of Bazel build scripts adding support for avr-gcc and unit testing with the Unity framework.

FOR USERS 1

EmbeddedSystemsBuildScripts, Release v1.0

2 FOR USERS

CHAPTER

ONE

BAZEL SETUP

This article explains how to setup Bazel, in order to work properly with the EmbeddedSystemsBuildScripts.

1.1 Install Bazelisk

Bazelisk is a bazel wrapper, which provides an easy way to switch between different bazel versions, without unin-
stalling your local bazel installation. In order to build with a specific bazel version, you need to supply a .
bazelversion file, where the desired version is specified, in your project root. For more information take a look
at the Github repository

1.1.1 Linux

The following manual explains how to install bazelisk on a ubuntu host. This should be the same on any other Debian
based systems. Some things may differ if you’re using a different Linux distribution. In that case please look up your
errors and add them to the troubleshooting section.

1. Step: Install Go

The installation slightly differs between Ubuntu versions. Please take a look here. The first paragraph on Ubuntu
19.04(LTS) should be fine.

2. Step: Install Bazelisk

This chapter explains how to get and install bazelisk. However, you are also able to fetch a suited binary from the
Github releases.

• run go get github.com/bazelbuild/bazelisk in your command line

• add to your PATH variable: export PATH=$PATH:$(go env GOPATH)/bin

• you may also want to simlink bazelisk to bazel, but that’s not really necessary

1.1.2 MacOS

• install the homebrew package manager

• run brew install bazelisk

3

https://github.com/bazelbuild/bazelisk
https://github.com/golang/go/wiki/Ubuntu
https://brew.sh/

EmbeddedSystemsBuildScripts, Release v1.0

4 Chapter 1. Bazel Setup

CHAPTER

TWO

AVRTOOLCHAIN

The AvrToolchain repository is an external dependency that is generated automatically by a repository_rule
implemented in @EmbeddedSystemsBuildScripts//Toolchains/Avr:avr.bzl. It provides
cc_toolchains for compiling code with the avr-gcc compiler, for different mcus. Most of the time you
will want to enable the --compile_mode=optimization flag that already contains gcc flags we found useful
for reducing code size.

2.1 Instantiate the AvrToolchain Repository

To depend on the EmbeddedSystemsBuildScripts add this to your WORKSPACE file:

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive(
name = "EmbeddedSystemsBuildScripts",
strip_prefix = "EmbeddedSystemsBuildScripts-{version}",
urls = ["https://github.com/es-ude/EmbeddedSystemsBuildScripts/archive/{version}.

→˓tar.gz"]
)

replace {version} with the actual version you want to use. Or use:

http_archive(
name = "EmbeddedSystemsBuildScripts",
strip_prefix = "EmbeddedSystemsBuildScripts-master",
urls = ["https://github.com/es-ude/EmbeddedSystemsBuildScripts/archive/master.tar.gz

→˓"]
)

to depend on the current master branch. Now you can call the repository rule, that will create the necessary avr
toolchains and platforms. Add:

load("@EmbeddedSystemsBuildScripts//Toolchains/Avr:avr.bzl", "avr_toolchain")

avr_toolchain()

to the WORKSPACE file. The http_archive rule has to be called before loading the create_avr() function.

5

https://docs.bazel.build/versions/master/skylark/repository_rules.html
https://github.com/es-ude/EmbeddedSystemsBuildScripts/blob/master/Toolchains/Avr/avr.bzl
https://docs.bazel.build/versions/master/skylark/repository_rules.html

EmbeddedSystemsBuildScripts, Release v1.0

2.2 On Platforms and Constraints

Our code has to be deployable on a range of 8-bit AVR platforms as well as the host platforms (this is where your
bazel instance runs). Bazel’s platforms and constraints mechanics allow to make build decisions depend on different
constraints. The user can then specify a set of specific constraints to apply to the current build process with the help
of the platform rule.

Constraints are basically just typed enumerations and platforms specify a set of constraints. The type
of a constraint_value is called constraint_setting. For every platform at most one
constraint_value for each constraint_setting may be specified (ie. your platform may not have arm
and x64_86 as cpu architecture).

The scripts provided by us already take different constraints into account. This allows us to write scripts that will
produce correct results without knowing the exact platform you want to build for.

We already ship some platform definitions for platforms that we use internally. You can see a list of these definitions
by running:

$ bazel query `(kind:platform, @AvrToolchain//platforms:*)

To compile for one of these platforms use e.g.:

$ bazel build //:myTarget --platforms @AvrToolchain//platforms:Motherboard

By default, we compile with the feature named gnu99, that adds --std=gnu99 to the build command. However,
if you want to build with avr-g++ -std=gnu99 is an invalid flag and can be disabled by adding the build flag
--feature=-gnu99.

2.2.1 How to define your own platforms

To define your own avr based platform you will need to specify at least the mcu. Run:

bazel query 'kind(constraint_value, @AvrToolchain//platforms/mcu:*)'

to retrieve a list of available mcus. Additionally there is the @AvrToolchain//platforms:avr_common plat-
form that serves as a parent for all other avr based platforms. E.g. a new platform definition could look like this:

platform(
name = "MyPlatform",
constraint_values = [
"@AvrToolchain//platforms/mcu:atmega16",
"@AvrToolchain//platforms/cpu_frequency:8mhz",

],
parents = ["@AvrToolchain//platforms:avr_common"],

)

To see a list of available constraint settings run:

$ bazel query 'kind(constraint_setting, @AvrToolchain//platforms/...)'

and to see a list of available values for the setting <my_setting> you can run:

$ bazel query 'attr(constraint_setting, <my_setting>, @AvrToolchain//...)'

6 Chapter 2. AvrToolchain

https://docs.bazel.build/versions/master/platforms.html

CHAPTER

THREE

UNIT TESTING

3.1 Basic Setup

In order to make unit testing work, the WORKSPACE file must contain the external dependency Unity:

http_archive(
name = "Unity",
build_file = "@EmbeddedSystemsBuildScripts//:BUILD.Unity",
strip_prefix = "Unity-master",
urls = ["https://github.com/ThrowTheSwitch/Unity/archive/master.tar.gz"],

)

We would advise to use the BazelCProjectCreator for creating a project. This python script creates the com-
plete project, including a unit test. However, if you want to include unit tests in your current project, we would advise
you to create a folder called test. This folder should contain *.c files with unit tests and a BUILD file.

Content of a .c test file

#include "unity.h"

void test_shouldFail(void)
{

TEST_FAIL();
}

Content of the BUILD file:

load("@EmbeddedSystemsBuildScripts//Unity:unity.bzl", "unity_test")

Each file that contains unit tests can be compiled and executed by using the unity_test macro, i.e.:

unity_test(
cexception = False,
file_name = "first_Test.c",
deps = [

"//:Library",
"//My_Project:HdrOnlyLib",

]
)

The tests can be be run by executing bazel test test:first_Test from the project root in the command
line. Alternatively, all available tests can be run with bazel test test:all.

7

EmbeddedSystemsBuildScripts, Release v1.0

3.2 CException

In the example unit test listed above, cexception is set to False. If you want to include CException as an external
dependency in your project, you need to add the following to your WORKSPACE file:

http_archive(
name = "CException",
build_file = "@EmbeddedSystemsBuildScripts//:BUILD.CException",
strip_prefix = "CException-master",
urls = ["https://github.com/ThrowTheSwitch/CException/archive/master.tar.gz"],

)

Additionally, you may set the cexception attribute to True (default value is True).

3.3 Mocking

We currently make use of CMock for creating mocks. CMock can be included as an external dependency by adding
the following to the WORKSPACE file:

http_archive(
name = "CMock",
build_file = "@EmbeddedSystemsBuildScripts//:BUILD.CMock",
strip_prefix = "CMock-master",
urls = ["https://github.com/ThrowTheSwitch/CMock/archive/ master.tar.gz"],

)

Mocks are created in the BUILD file of the test folder. In order to do that, load the macro mock(), by adding it to the
load statement, i.e.:

mock(
name = "mock_MyHeader",
srcs = ["//MyProject:MyHeader.h"],
deps = ["//MyProject:MyHeaderLibrary"],

)

In order to use the mock in a unit test, the mock has to be in the dependencies of the unit test at the first position, i.e.:

unity_test(
cexception = False,
file_name = "my_Test.c",
deps = [

"mock_MyHeader",
"//MyProject:MyHeaderLibrary",

],
)

8 Chapter 3. Unit Testing

	Bazel Setup
	Install Bazelisk

	AvrToolchain
	Instantiate the AvrToolchain Repository
	On Platforms and Constraints

	Unit Testing
	Basic Setup
	CException
	Mocking

