
EmbeddedSystemsBuildScripts
Release v0.5

Embedded Systems Department University Duisburg-Essen

Jun 19, 2019

FOR USERS

1 AvrToolchain 3
1.1 Instantiate the AvrToolchain Repository . 3
1.2 On Platforms and Constraints . 4

i

ii

EmbeddedSystemsBuildScripts, Release v0.5

A collection of Bazel build scripts adding support for avr-gcc and unit testing with the Unity framework.

FOR USERS 1

EmbeddedSystemsBuildScripts, Release v0.5

2 FOR USERS

CHAPTER

ONE

AVRTOOLCHAIN

The AvrToolchain repository is an external dependency that is generated automatically by a repository_rule
implemented in @EmbeddedSystemsBuildScripts//AvrToolchain:avr.bzl. It provides
cc_toolchains for compiling code with the avr-gcc compiler, for different mcus. Most of the time you
will want to enable the --compile_mode=optimization flag that already contains gcc flags we found useful
for reducing code size.

1.1 Instantiate the AvrToolchain Repository

To depend on the EmbeddedSystemsBuildScripts add this to your WORKSPACE file:

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive(
name = "EmbeddedSystemsBuildScripts",
strip-prefix = "EmbeddedSystemsBuildScripts-{version}",
urls = ["https://github.com/es-ude/EmbeddedSystemsBuildScripts/archive/{version}.

→˓tar.gz"]
)

replace {version} with the actual version you want to use. Or use:

http_archive(
name = "EmbeddedSystemsBuildScripts",
strip-prefix = "EmbeddedSystemsBuildScripts-master",
urls = ["https://github.com/es-ude/EmbeddedSystemsBuildScripts/archive/master.tar.gz

→˓"]
)

to depend on the current master branch. Now you can call the repository rule, that will create the necessary avr
toolchains and platforms. Add:

load("@EmbeddedSystemsBuildScripts//AvrToolchain:avr.bzl", "avr_toolchain")

avr_toolchain()

to the WORKSPACE file. The http_archive rule has to be called before loading the create_avr() function.

3

https://docs.bazel.build/versions/master/skylark/repository_rules.html
https://github.com/es-ude/EmbeddedSystemsBuildScripts/blob/master/AvrToolchain/avr.bzl
https://docs.bazel.build/versions/master/skylark/repository_rules.html

EmbeddedSystemsBuildScripts, Release v0.5

1.2 On Platforms and Constraints

Our code has to be deployable on a range of 8-bit AVR platforms as well as the host platforms (this is where your
bazel instance runs). Bazel’s platforms and constraints mechanics allow to make build decisions depend on different
constraints. The user can then specify a set of specific constraints to apply to the current build process with the help
of the platform rule.

Constraints are basically just typed enumerations and platforms specify a set of constraints. The type
of a constraint_value is called constraint_setting. For every platform at most one
constraint_value for each constraint_setting may be specified (ie. your platform may not have arm
and x64_86 as cpu architecture).

The scripts provided by us already take different constraints into account. This allows us to write scripts that will
produce correct results without knowing the exact platform you want to build for.

We already ship some platform definitions for platforms that we use internally. You can see a list of these definitions
by running:

$ bazel query `(kind:platform, @AvrToolchain//platforms:*)`

To compile for one of these platforms use e.g.:

$ bazel build //:myTarget --platforms @AvrToolchain//platforms:Motherboard

1.2.1 How to define your own platforms

To define your own avr based platform you will need to specify at least the mcu. Run:

bazel query 'kind(constraint_value, @AvrToolchain//platforms/mcu:*)'

to retrieve a list of available mcus. Additionally there is the @AvrToolchain//platforms:avr_common plat-
form that serves as a parent for all other avr based platforms. E.g. a new platform definition could look like this:

platform(
name = "MyPlatform",
constraint_values = [
"@AvrToolchain//platforms/mcu:atmega16",
"@AvrToolchain//platforms/cpu_frequency:8mhz",

],
parents = ["@AvrToolchain//platforms:avr_common"],

)

To see a list of available constraint settings run:

$ bazel query 'kind(constraint_setting, @AvrToolchain//platforms/...)'

and to see a list of available values for the setting <my_setting> you can run:

$ bazel query 'attr(constraint_setting, <my_setting>, @AvrToolchain//...)'

4 Chapter 1. AvrToolchain

https://docs.bazel.build/versions/master/platforms.html

	AvrToolchain
	Instantiate the AvrToolchain Repository
	On Platforms and Constraints

