

EmbeddedSystemsBuildScripts

A collection of Bazel build scripts adding support
for avr-gcc and unit testing with the Unity framework.

For Users

	Bazel Setup
	Install Bazelisk
	Linux

	MacOS

	AvrToolchain
	Instantiate the AvrToolchain Repository

	On Platforms and Constraints
	How to define your own platforms

	Unit Testing
	Basic Setup

	CException

	Mocking

Bazel Setup

This article explains how to setup Bazel, in order
to work properly with the EmbeddedSystemsBuildScripts.

Install Bazelisk

Bazelisk is a bazel wrapper, which provides an easy way to
switch between different bazel versions, without uninstalling
your local bazel installation. In order to build with a specific
bazel version, you need to supply a .bazelversion file, where
the desired version is specified, in your project root.
For more information take a look
at the Github repository [https://github.com/bazelbuild/bazelisk]

Linux

The following manual explains how to install bazelisk on a ubuntu host.
This should be the same on any other Debian based systems. Some things
may differ if you’re using a different Linux distribution. In that case
please look up your errors and add them to the troubleshooting section.

1. Step: Install Go

The installation slightly differs between Ubuntu versions. Please take a
look here [https://github.com/golang/go/wiki/Ubuntu]. The first paragraph on Ubuntu 19.04(LTS) should be fine.

2. Step: Install Bazelisk

This chapter explains how to get and install bazelisk. However, you are
also able to fetch a suited binary from the Github releases.

	run go get github.com/bazelbuild/bazelisk in your command line

	add to your PATH variable: export PATH=$PATH:$(go env GOPATH)/bin

	you may also want to simlink bazelisk to bazel, but that’s not really necessary

MacOS

	install the homebrew [https://brew.sh/] package manager

	run brew install bazelisk

AvrToolchain

The AvrToolchain repository is an external
dependency that is generated automatically
by a repository_rule [https://docs.bazel.build/versions/master/skylark/repository_rules.html] implemented
in @EmbeddedSystemsBuildScripts//Toolchains/Avr:avr.bzl [https://github.com/es-ude/EmbeddedSystemsBuildScripts/blob/master/Toolchains/Avr/avr.bzl]. It provides cc_toolchains
for compiling code with the avr-gcc compiler,
for different mcus. Most of the time you will
want to enable the --compile_mode=optimization
flag that already contains gcc flags we
found useful for reducing code size.

Instantiate the AvrToolchain Repository

To depend on the EmbeddedSystemsBuildScripts add this to your WORKSPACE file:

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive(
 name = "EmbeddedSystemsBuildScripts",
 strip_prefix = "EmbeddedSystemsBuildScripts-{version}",
 urls = ["https://github.com/es-ude/EmbeddedSystemsBuildScripts/archive/{version}.tar.gz"]
)

replace {version} with the actual version you want to use.
Or use:

http_archive(
 name = "EmbeddedSystemsBuildScripts",
 strip_prefix = "EmbeddedSystemsBuildScripts-master",
 urls = ["https://github.com/es-ude/EmbeddedSystemsBuildScripts/archive/master.tar.gz"]
)

to depend on the current master branch.
Now you can call the repository rule, that will create the necessary avr toolchains
and platforms. Add:

load("@EmbeddedSystemsBuildScripts//Toolchains/Avr:avr.bzl", "avr_toolchain")

avr_toolchain()

to the WORKSPACE file. The http_archive [https://docs.bazel.build/versions/master/skylark/repository_rules.html] rule has to be called before loading
the create_avr() function.

On Platforms and Constraints

Our code has to be deployable on a range
of 8-bit AVR platforms as well as the
host platforms (this is where your bazel
instance runs). Bazel’s platforms [https://docs.bazel.build/versions/master/platforms.html]
and constraints mechanics allow to
make build decisions depend on different
constraints. The user can then
specify a set of specific constraints
to apply to the current build process
with the help of the platform rule.

Constraints are basically just typed
enumerations and platforms specify
a set of constraints. The type
of a constraint_value is called
constraint_setting.
For every platform at most
one constraint_value for each
constraint_setting may be
specified (ie. your platform may not have
arm and x64_86 as cpu architecture).

The scripts provided by us already
take different constraints into account.
This allows us to write scripts that will
produce correct results without knowing the
exact platform you want to build for.

We already ship some platform definitions
for platforms that we use internally.
You can see a list of these definitions by running:

$ bazel query `(kind:platform, @AvrToolchain//platforms:*)

To compile for one of these platforms use e.g.:

$ bazel build //:myTarget --platforms @AvrToolchain//platforms:Motherboard

By default, we compile with the feature named gnu99, that adds --std=gnu99 to the build command. However, if you want to
build with avr-g++ -std=gnu99 is an invalid flag and can be disabled by
adding the build flag --feature=-gnu99.

How to define your own platforms

To define your own avr based platform you will
need to specify at least the mcu.
Run:

bazel query 'kind(constraint_value, @AvrToolchain//platforms/mcu:*)'

to retrieve a list of available mcus.
Additionally there is the @AvrToolchain//platforms:avr_common platform
that serves as a parent for all other avr based platforms.
E.g. a new platform definition could look like this:

platform(
 name = "MyPlatform",
 constraint_values = [
 "@AvrToolchain//platforms/mcu:atmega16",
 "@AvrToolchain//platforms/cpu_frequency:8mhz",
],
 parents = ["@AvrToolchain//platforms:avr_common"],
)

To see a list of available constraint settings run:

$ bazel query 'kind(constraint_setting, @AvrToolchain//platforms/...)'

and to see a list of available values for the setting <my_setting> you can run:

$ bazel query 'attr(constraint_setting, <my_setting>, @AvrToolchain//...)'

Unit Testing

Basic Setup

In order to make unit testing work, the WORKSPACE file must contain the external dependency Unity:

http_archive(
 name = "Unity",
 build_file = "@EmbeddedSystemsBuildScripts//:BUILD.Unity",
 strip_prefix = "Unity-master",
 urls = ["https://github.com/ThrowTheSwitch/Unity/archive/master.tar.gz"],
)

We would advise to use the BazelCProjectCreator for creating a project.
This python script creates the complete project, including a unit test. However, if you want to include unit tests in your current project,
we would advise you to create a folder called test. This folder should contain *.c files with unit tests and a BUILD file.

Content of a .c test file

#include "unity.h"

void test_shouldFail(void)
{
 TEST_FAIL();
}

Content of the BUILD file:

load("@EmbeddedSystemsBuildScripts//Unity:unity.bzl", "unity_test")

Each file that contains unit tests can be compiled and executed by using the unity_test macro, i.e.:

unity_test(
 cexception = False,
 file_name = "first_Test.c",
 deps = [
 "//:Library",
 "//My_Project:HdrOnlyLib",
]
)

The tests can be be run by executing bazel test test:first_Test from the project root in the command line. Alternatively, all available tests can be run with bazel test test:all.

CException

In the example unit test listed above, cexception is set to False. If you want to include CException as an external dependency in your project, you need to add the following to your WORKSPACE file:

http_archive(
 name = "CException",
 build_file = "@EmbeddedSystemsBuildScripts//:BUILD.CException",
 strip_prefix = "CException-master",
 urls = ["https://github.com/ThrowTheSwitch/CException/archive/master.tar.gz"],
)

Additionally, you may set the cexception attribute to True (default value is True).

Mocking

We currently make use of CMock for creating mocks. CMock can be included as an external dependency by adding the following to the WORKSPACE file:

http_archive(
 name = "CMock",
 build_file = "@EmbeddedSystemsBuildScripts//:BUILD.CMock",
 strip_prefix = "CMock-master",
 urls = ["https://github.com/ThrowTheSwitch/CMock/archive/ master.tar.gz"],
)

Mocks are created in the BUILD file of the test folder. In order to do that, load the macro mock(), by adding it to the load statement, i.e.:

mock(
 name = "mock_MyHeader",
 srcs = ["//MyProject:MyHeader.h"],
 deps = ["//MyProject:MyHeaderLibrary"],
)

In order to use the mock in a unit test, the mock has to be in the dependencies of the unit test at the first position, i.e.:

unity_test(
 cexception = False,
 file_name = "my_Test.c",
 deps = [
 "mock_MyHeader",
 "//MyProject:MyHeaderLibrary",
],
)

Index

 nav.xhtml

 Table of Contents

 		
 EmbeddedSystemsBuildScripts

 		
 Bazel Setup

 		
 Install Bazelisk

 		
 Linux

 		
 MacOS

 		
 AvrToolchain

 		
 Instantiate the AvrToolchain Repository

 		
 On Platforms and Constraints

 		
 How to define your own platforms

 		
 Unit Testing

 		
 Basic Setup

 		
 CException

 		
 Mocking

_static/file.png

_static/minus.png

_static/plus.png

